
Research Article
Volume 18 Issue 4 - March 2024
DOI: 10.19080/OAJNN.2024.18.555999

Open Access J Neurol Neurosurg
  Copyright © All rights are reserved by Moemi Matsuo

Decoding Attentional Task Performance Using 
Electroencephalogram Signals

Moemi Matsuo1* and Takashi Higuchi2

1Faculty of Rehabilitation Sciences, Nishi Kyushu University, 842-8585 Kanzaki, Saga, Japan
2Department of Physical Therapy, Osaka University of Human Sciences, 566-8501 Settsu, Osaka, Japan

Submission: February 28, 2024; Published: March 06, 2024

*Corresponding author: Moemi Matsuo, Faculty of Rehabilitation Sciences, Nishi Kyushu University, 842-8585 Kanzaki, Saga, Japan. Tel.: 
+818056090223; E-mail: matsuomo@nisikyu-u.ac.jp; ORCID: 0000-0001-7458-1782

Open Access J Neurol Neurosurg 18(5): OAJNN.MS.ID.555999 (2024) 001

Introduction

Implementation of modular assessments of cognitive 
capabilities at the individual level is crucial in the realm of 
personalized care and rehabilitation [1]. Rapid transmission of 
information across the brain underscores the importance of non-
invasive neuroimaging techniques, such as electroencephalogram 
(EEG) indices. These indices exhibit sensitivity to fluctuations 
in the human brain, reflecting spontaneous brain activity with 
excellent temporal resolution [2]. Additionally, EEG signals serve 
as important neuro-electrophysiological indicators of brain 
activity [3]. Over the past decade, various new EEG systems 
have emerged, enabling the recording of brain activity during 
movement [4]. While a single-dimensional measure, such as pupil 
size, may be suitable when specific data parameters and goals 
are well defined, multidimensional signals offer a more viable 
choice. The EEG gathers information on a variety of functions, 
including attention, memory, and emotions [5]. Accordingly, the 
EEG elucidates important effects of brain networks on attentional 
function from the perspective of brain connections and provides  

 
potential physiological biomarkers for predicting attention [6]. 
Resting-state EEG data can delineate inter-individual variability 
at rest and its correlation with attentional capacity and autistic 
behavioral patterns [7]. Different EEG patterns reflect various 
degrees of ischemic brain injury, with some proving reliable 
predictors of functional performance [8].

Attention is a fundamental component of all the cognitive 
and perceptual processes [9]. Similar to other networks in the 
brain, the human attention system is complex. At any moment, 
attention can shift between the external and internal stimuli 
[10]. The literature highlights three primary mechanisms: global, 
local, and self-attention mechanisms [11]. Attention, as a limited 
cognitive resource, selectively focuses on discrete aspects of 
information while ignoring others; it is typically divided into two 
types: active (top-down or endogenous) and passive (bottom-up 
or exogenous) [12]. An externally directed attentive state often 
corresponds to reduced focus on internally oriented mental 
processes [13]. Sufficiently strong attentive states may impair 
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conscious awareness of both the environment and oneself [14]. 
Previous studies have revealed the functional roles of alpha (α)-
band oscillations [15], which are the most prevalent rhythms 
in EEG recordings and spread through most cortical regions 
[15]. However, the role of the alpha wave remains debatable 
[15]. Elevated parietal α power [16] is associated with a shift 
from attention to the default mode, which suppresses external 
stimulus processing [17]. This increase is usually accompanied by 
an increase in frontal theta (θ) power [16], reflecting cognitive 
control-task execution, memory function, and error processing 
[17,18]. Greater θ activity is believed to reflect heightened effort 
in meeting the increasing cognitive demands of prolonged tasks 
[16]. Furthermore, heightened power in slow-frequency bands 
(i.e., θ and α) is associated with lower performance [17]. When 
the functional state of the brain is suppressed, slow waves with 
frequencies below 8 Hz occur, namely, δ waves and θ waves [19].

This discourse between power band-associated cognitive 
performance remains unresolved. To develop novel methods for 
evaluating attentional function, we must further investigate the 
fundamental brain mechanisms involved in attentional tasks. 
Therefore, this study aimed to determine a potential correlation 
between attentional task performance and EEG waves. By delving 
into the default mode network (DMN), this study not only unveils 
insights into attentional deficits but also contributes to our 
comprehension of the DMN’s role.

Methods

Participants

Twelve healthy young adults (seven women and five men; 
age: 21.3 ± 0.62 years) participated in the present study. All 
prospective participants were provided with a comprehensive 
explanation of the study’s safety protocols and were assured that 
their personal identifying information would remain confidential; 
thereafter, they provided written informed consent for study 
participation. Additional informed consent was obtained from 
all participants whose identifiable information was included 
in the study. None of the participants had a history of major 
physical disorders, including neurological illnesses, brain injury, 
or psychiatric illnesses. This study was approved by the Ethics 
Committee of Nishikyushu University (approval no. 22EAB19) 
and conformed to the principles of the Declaration of Helsinki and 
its later amendments.

Task

The Trail-Making Test (TMT) comprises two distinct parts: 
Part A requires patients to sequentially connect 25 encircled 
numbers (through lines) dispersed in a pseudo-random manner 
on a sheet; In TMT Part B, participants alternate between numbers 
and letters when connecting different items in an ascending order 
(i.e., 1, A, 2, B, etc.) [20].

Experimental Setup

Participants were seated in a quiet room on a chair with a 
backrest and placed their forearms in a relaxed position on a table. 
They were instructed to perform the TMT without any additional 
movements, such as head movement, and maintain the same 
posture throughout the experiment. Additionally, participants 
were instructed to remain silent throughout the experiment, relax 
without thinking, and fixate their gaze on a cross displayed on a 
piece of paper in front of them during both task performance and 
resting periods.

Experimental Protocol

The experimental protocol comprised two tasks, each 
preceded by a 1-min rest period. EEG measurements were 
recorded continuously during the experiment using Polymate Pro 
MP6100 (Miyuki Giken, Tokyo, Japan). The EEG recorded at the 
scalp level represents the aggregate currents of the electrical fields 
generated by neural activity in cortical neural circuits [21]. Prior 
to electrode placement, the skin was prepared with alcohol, and 
the electrodes were affixed to an elastic cap using a holder. Based 
on the international 10-20 EEG placement system, 19 gold-coated 
active EEG electrodes were placed at specific cortical locations: 
Fp1 (left frontal pole), Fp2 (right frontal pole), F3 (left frontal), 
Fz (middle frontal), F4 (right frontal), F7 (left inferior frontal), F8 
(right inferior frontal), C3 (left central), Cz (middle central), C4 
(right central), P3 (left parietal), Pz (middle parietal), P4 (right 
parietal), O1 (left occipital), O2 (right occipital), T3 (left mid 
temporal), T4 (right mid temporal), T5 (left posterior temporal), 
and T6 (right posterior temporal) (Figure 1).

Data Analysis

The EEG data were sampled at a rate of 1,000 Hz and filtered 
within the 1-60 Hz range using a bandpass filter. Data containing 
eye blinks or muscle movement artifacts were excluded. Power 
spectrum analysis was conducting using the Electro Magnetic 
Source Estimation Data Editor (Cortech Solutions, Wilmington, 
NC). Six EEG datasets (delta, theta, alpha, beta, low-gamma, and 
high-gamma) were used for each electrode. Furthermore, waves 
lying within the 0-4 Hz, 5-8 Hz, 9-13 Hz, 14-30 Hz, 31-50 Hz, and 
>50 Hz ranges were categorized as delta, theta, alpha, beta, low-
gamma, and high-gamma waves, respectively.

Statistical Analysis

The mean power level was calculated for each resting and 
task condition. Spearman’s rank correlation was used to examine 
the correlation between task performance and EEG power levels 
during rest and TMT tasks. Furthermore, IBM SPSS Statistics 
version 20.0 (IBM Corp., Armonk, NY, USA) was used for statistical 
analysis. Statistical significance was set at p <0.05.
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Figure 1: EEG electrode sets. The EEG electrodes were placed according to the international 10–20 EEG placement method. The Fp1, 
Fp2, F3, Fz, F4, F7, F8, C3, Cz, C4, P3, Pz, P4, O1, O2, T3, T4, T5, and T6 were examined. EEG, electroencephalography; Fp1, left frontal 
pole; Fp2, right frontal pole; F3, left frontal; Fz, middle frontal; F4, right frontal; F7, left inferior frontal; F8, right inferior frontal; C3, left central; 
Cz, middle central; C4, right central; P3, left parietal; Pz, middle parietal; P4, right parietal; O1, left occipital; O2, right occipital; T3, left mid 
temporal; T4, right mid temporal; T5, left posterior temporal; T6, right posterior temporal.

Results

The associations between task performance and EEG power 
levels during the TMT-A rest and task conditions are summarized 
in Tables 1 and 2, respectively. Notably, no significant correlations 
were observed between task performance and EEG power levels 

for the TMT-A. The correlations between task performance and 
EEG power levels in the TMT-B rest and task conditions are 
summarized in Tables 3 and 4. Stronger occipital delta power at 
rest was significantly correlated with more errors. Additionally, 
weaker temporal and central delta power during the task were 
significantly correlated with a longer task time.

Table 1: Correlation of Task Performance and EEG Power Level of the TMT-A Rest.

Task performance Brain areas (ρ) Delta Theta Alpha Beta Low-gamma High-gamma

Time

Frontal -0.182 -0.091 -0.315 0.084 0.182 -0.119

Central -0.294 -0.259 -0.329 -0.091 0.105 0.028

Temporal -0.273 -0.105 -0.175 0.266 0.224 0.084

Parietal -0.462 -0.105 -0.364 -0.049 0.175 0.413

Occipital -0.308 -0.154 -0.322 -0.161 0.077 0.077

Error

Frontal 0.453 0.259 -0.259 -0.13 -0.194 -0.389

Central 0.324 0 -0.194 -0.324 -0.194 -0.389

Temporal 0.389 0.065 -0.13 -0.259 -0.259 -0.389

Parietal 0.389 0.065 -0.13 -0.324 -0.389 0

Occipital 0.518 0.194 0 -0.324 -0.453 -0.453

EEG, electroencephalogram; TMT, Trail-Making Test

Table 2: Correlation of Task Performance and EEG Power Level of the TMT-A Task.

Task performance Brain areas (ρ) Delta Theta Alpha Beta Low-gamma High-gamma

Time

Frontal -0.336 -0.308 -0.462 0.315 0.364 0.028

Central -0.364 -0.462 -0.385 0.231 0.357 0.133

Temporal -0.441 -0.252 -0.168 0.531 0.455 0.301

Parietal -0.413 -0.091 -0.434 0.28 0.385 0.371

Occipital -0.483 -0.028 -0.105 0.357 0.49 0.315
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Error

Frontal 0.259 0.453 0.324 -0.065 0.000 -0.194

Central 0.194 0.324 0.13 0.000 0.000 -0.065

Temporal 0.259 0.389 0.13 0.000 -0.13 -0.194

Parietal 0.259 0.389 0.259 -0.065 -0.065 0.000

Occipital 0.389 0.518 0.389 -0.065 0 -0.065

EEG, electroencephalogram; TMT, Trail-Making Test

Table 3: Correlation of Task Performance and EEG Power Level of the TMT-B Rest.

Task performance Brain areas (ρ) Delta Theta Alpha Beta Low-gamma High-gamma

Time

Frontal 0.217 0.308 -0.14 0.252 0.294 0.147

Central 0.021 0.077 -0.217 0.266 0.273 0.147

Temporal 0.126 0.161 -0.077 0.364 0.336 0.189

Parietal 0.098 0.203 -0.154 0.203 0.091 0.203

Occipital 0.056 0.196 -0.161 0.147 0.091 0.084

Error

Frontal 0.389 0.389 0.324 0.324 0.194 0

Central 0.324 0.065 0.194 0.324 0.194 0.259

Temporal 0.453 0.194 0.194 0.065 0.13 0.065

Parietal 0.453 0.259 0.389 0.259 0.194 0.389

Occipital 0.648* 0.324 0.389 0.194 0 0.13

*P<0.05, Spearman’s rank correlation
EEG, electroencephalogram; TMT, Trail-Making Test

Table 4: Correlation of Task Performance and EEG Power Level of the TMT-B Task.

Task performance Brain areas (ρ) Delta Theta Alpha Beta Low-gamma High-gamma

Time

Frontal -0.455 -0.196 -0.035 0.399 0.308 -0.084

Central -0.699* -0.392 -0.014 0.077 -0.196 -0.294

Temporal -0.608* -0.273 0.056 0.42 0.294 0.084

Parietal -0.531 0.021 -0.112 0.385 0.182 0.28

Occipital -0.42 0.028 0.014 0.063 -0.035 0.042

Error

Frontal 0.389 0.518 0.453 0.194 0.065 0

Central 0.194 0.259 0.324 -0.065 -0.13 0

Temporal 0.13 0.259 0.13 0.13 0.065 0

Parietal 0.259 0.389 0.259 0.13 0.13 0.259

Occipital 0.259 0.518 0.389 0.389 0.324 0.259

*P<0.05, Spearman’s rank correlation

EEG, electroencephalogram; TMT, Trail-Making Test

Discussion

Recent studies have suggested that attention operates as a 
rhythmic process, yet the debate continues regarding whether 
this rhythmicity is influenced by the phase of the ongoing neural 
oscillations. Addressing this issue requires the use of behavioral 
tasks that isolate attention from other cognitive functions 
(perception/decision-making), and the localized monitoring 
of neural activity with high spatiotemporal resolution across 
the brain regions associated with the attentional network.22 In 

the present study, we investigated the relationship between 
attentional task performance and EEG frequency using the TMT, 
which is a simple behavioral task that isolates attention from 
other cognitive functions. The results showed that a stronger 
occipital delta power during rest was significantly correlated with 
more errors. Moreover, weaker temporal and central delta power 
during TMT-B was significantly correlated with a longer task time. 
No significant correlations were found between task performance 
and EEG power levels for TMT-A.
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Notably, the modulation of behavioral outcomes through 
EEG frequencies of 3, 6, and 8 Hz (delta, theta, and alpha bands) 
throughout the frontal region has been reported in studies 
focusing on quantifying the phase that predicts the high and 
low attention states [22]. High amplitudes and percentages 
of delta waves in the frontal lobe for Fz-F3-F4 demonstrates 
strong stimulation of the limbic system, strong emotions, flurry 
thoughts, and confusion [23]. Stress, uncertainty, tension, and 
the release of adrenaline can contribute to heightened arousal 
and impact cognitive state [24]. The most dominant patterns of 
change in patients with attention deficit hyperactivity disorder, 
schizophrenia, and obsessive-compulsive disorder are power 
increases across lower frequencies (delta, 1-4 Hz and theta, 4-8 Hz) 
and decreases across higher frequencies (alpha, 8-13 Hz; beta, 13-
30 Hz and gamma, 30-50 Hz) [25]. Impairment of visual attention 
is associated with differences in EEG features, network activation, 
and involvement of the right frontal eye field [26]. In contrast, our 
findings showed that frontal delta power was not correlated with 
task performance, while stronger occipital delta power during 
rest was significantly correlated with more errors, and weaker 
temporal and central delta power during TMT-B was significantly 
correlated with a longer task time. These results indicate that the 
influence of delta waves on task performance may be mediated 
by their interaction with the cerebral lobes, highlighting their 
role in task specificity. Moreover, these phenomena affect the task 
performance’s specificity. Furthermore, attentional deficits may 
be reflected differentially by resting-state and attentional-state 
EEG data, implying that the DMN may predict attentional deficits.

Additionally, a correlation exists between different EEG 
frequencies and attentional task performance. A higher theta-beta 
ratio reflects challenges in attention allocation for a given task 
[27]. Gamma band activity plays a vital role in many sensory and 
cognitive processes. Therefore, the peak frequency in the gamma 
range has received considerable attention [28]. Gamma band 
activity, combined with frontal midline theta rhythm in the left 
and right frontal forehead regions, appears to reflect prefrontal 
function in working memory tasks [29]. Furthermore, lateralized 
patterns of band phase coupling between the frontal and parietal-
occipital regions have been identified during covert visuospatial 
attention tasks in healthy young adults [30]. While these findings 
enrich our understanding of the brain mechanisms underlying 
attention, further exploration into additional EEG frequency 
considerations and their potential impact on task performance, 
particularly lateralized patterns, is essential.

This study had some limitations. It focused solely on healthy 
young adults; therefore, it is unclear whether our results can 
be generalized to older patients or those with neurological 
disabilities. Furthermore, the attentional task only utilized the 
TMT; therefore, whether brain waves during other attentional 
tasks are comparable to those observed during the TMT remains 
unclear. Additionally, our study included only a small number 

of participants. To address these limitations, future studies 
should include more participants performing tasks under 
various conditions and investigate brainwave activity across 
diverse attentional tasks. Despite these limitations, these study 
findings indicate that stronger occipital delta power during rest 
is correlated with errors, and weaker temporal and central delta 
power during tasks is linked to a longer task times, offering 
insights into the role of brain rhythms in attentional deficits and 
contributing to our understanding of cognitive functions and 
neural connections.

Conclusion

Our study identified significant correlations between EEG 
power levels and attentional task performance. Specifically, 
stronger occipital delta power during rest was significantly 
correlated with increased errors, while weaker temporal and 
central delta power during TMT-B was significantly associated 
with a longer task time. Delta waves during both the resting-state 
and task conditions were correlated with task performance, which 
may also be affected by the induced cerebral lobes. Moreover, 
our findings suggest the potential predictive value of the DMN 
for attention deficits. Our findings expand the understanding of 
the interplay between DMN and attentional task performance, 
emphasizing the need for further investigations into the intricate 
relationships between EEG frequencies and attentional task 
performance.
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